Nox4-derived reactive oxygen species mediate cardiomyocyte injury in early type 1 diabetes.

نویسندگان

  • Rita M Maalouf
  • Assaad A Eid
  • Yves C Gorin
  • Karen Block
  • Gladys Patricia Escobar
  • Steven Bailey
  • Hanna E Abboud
چکیده

Oxidative stress contributes to diabetic cardiomyopathy. This study explored the role of the NADPH oxidase Nox4 as a source of reactive oxygen species (ROS) involved in the development of diabetic cardiomyopathy. Phosphorothioated antisense (AS) or sense (S) oligonucleotides for Nox4 were administered for 2 wk to rats made diabetic by streptozotocin. NADPH oxidase activity, ROS generation, and the expression of Nox4, but Nox1 or Nox2, were increased in left ventricular tissue of the diabetic rats. Expression of molecular markers of hypertrophy and myofibrosis including fibronectin, collagen, α-smooth muscle actin, and β-myosin heavy chain were also increased. These parameters were attenuated by the administration of AS but not S Nox4. Moreover, the impairment of contractility observed in diabetic rats was prevented in AS- but not S-treated animals. Exposure of cultured cardiac myocytes to 25 mM glucose [high glucose (HG)] increased NADPH oxidase activity, the expression of Nox4, and molecular markers of cardiac injury. These effects of HG were prevented in cells infected with adenoviral vector containing a dominant negative form of Nox4. This study provides strong evidence that Nox4 is an important source of ROS in the left ventricle and that Nox4-derived ROS contribute to cardiomyopathy at early stages of type 1 diabetes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mammalian Target of Rapamycin Regulates Nox4-Mediated Podocyte Depletion in Diabetic Renal Injury

Podocyte apoptosis is a critical mechanism for excessive loss of urinary albumin that eventuates in kidney fibrosis. Pharmacological doses of the mammalian target of rapamycin (mTOR) inhibitor rapamycin reduce albuminuria in diabetes. We explored the hypothesis that mTOR mediates podocyte injury in diabetes. High glucose (HG) induces apoptosis of podocytes, inhibits AMP-activated protein kinase...

متن کامل

Reactive Oxygen Species Can Provide Atheroprotection via NOX4-Dependent Inhibition of Inflammation and Vascular Remodeling.

OBJECTIVE Oxidative stress is considered a hallmark of atherosclerosis. In particular, the superoxide-generating type 1 NADPH oxidase (NOX1) has been shown to be induced and play a pivotal role in early phases of mouse models of atherosclerosis and in the context of diabetes mellitus. Here, we investigated the role of the most abundant type 4 isoform (NOX4) in human and mouse advanced atheroscl...

متن کامل

NOX4 in Mitochondria: Yeast Two-Hybrid-Based Interaction with Complex I Without Relevance for Basal Reactive Oxygen Species?

NADPH oxidases (NOXs) represent the only known dedicated source of reactive oxygen species (ROS) and thus a prime therapeutic target. Type 4 NOX is unique as it produces H2O2, is constitutively active, and has been suggested to localize to cardiac mitochondria, thus possibly linking mitochondrial and NOX-derived ROS formation. The aim of this study was to identify NOX4-binding proteins and exam...

متن کامل

Hyperglycemia Enhances IGF-I–Stimulated Src Activation via Increasing Nox4-Derived Reactive Oxygen Species in a PKCζ-Dependent Manner in Vascular Smooth Muscle Cells

IGF-I-stimulated sarcoma viral oncogene (Src) activation during hyperglycemia is required for propagating downstream signaling. The aim of the current study was to determine the mechanism by which hyperglycemia enhances IGF-I-stimulated Src activation and the role of NADPH oxidase 4 (Nox4) and protein kinase C ζ (PKCζ) in mediating this response in vascular smooth muscle cells (VSMCs). Nox4 exp...

متن کامل

AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes.

Diabetes and high glucose (HG) increase the generation of NADPH oxidase-derived reactive oxygen species and induce apoptosis of glomerular epithelial cells (podocytes). Loss of podocytes contributes to albuminuria, a major risk factor for progression of kidney disease. Here, we show that HG inactivates AMP-activated protein kinase (AMPK), up-regulates Nox4, enhances NADPH oxidase activity, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 302 3  شماره 

صفحات  -

تاریخ انتشار 2012